Analytická geometrie

Intuitivně tušíme, co to kružnice je a jak vypadá - křivka, ohraničující kruh. Dnes se na ni podíváme jako na kuželosečku, tedy křivku, která vznikne průnikem kuželové plochy a roviny.

Definice kružnice

Kružnici můžeme definovat jako množinu bodů, která má od fixní bodu stálou vzdálenost. Fixní bod nazýváme středem kružnice a vzdáleností bodů kružnice od středu poloměrem R.

Středová rovnice kružnice

Krátkým odvození ve videu se dostaneme k formě rovnice, která popisuje všechny body na kružnici a jejich souřadnice. Má tuto podobu

Na pravé straně rovnice stojí druhá mocnina poloměru, což mimochodem znamená, že zde musí být nezáporné číslo. Souřadnice xs ys jsou souřadnice středu kružnice. Např. z tvaru rovnice 

lze hned vyčíst, že střed má souřadnice [3;5] a poloměr kružnice je 2. Ne vždy však máme rovnici kružnice v tomto hezkém tvaru. Pokud bychom ji roznásobili, dostali bychom tvar

Ve videu si vysvětlíme, jak tento roznásobený tvar převést zpět na středový pomocí doplňování na čtverec.

Poloha kružnice a přímky

Z geometrie víme, že existují tři základní polohy kružnice a přímky

  • Sečna - přímka má s kružnicí dva průsečíky
  • Tečna - přímka má s kružnici jeden průsečík a je kolmá na spojnici bodu dotyku a středu kružnice.
  • Vnější přímka - přímka neprotíná kružnici v žádném bodě

V analytické geometrii na polohu kružnice a přímky usuzujeme z množství průsečíků. Na ně přijdeme tehdy, pokud se na rovnici přímky a kružnice díváme jako na soustavu rovnic.